Simulation of Mist Film Cooling at Gas Turbine Operating Conditions

نویسندگان

  • Ting Wang
  • Xianchang Li
چکیده

Air film cooling has been successfully used to cool gas turbine hot sections for the last half century. A promising technology is proposed to enhance air film cooling with water mist injection. Numerical simulations have shown that injecting a small amount of water droplets into the cooling air improves film-cooling performance significantly. However, previous studies were conducted at conditions of low Reynolds number, temperature, and pressure to allow comparisons with experimental data. As a continuous effort to develop a realistic mist film cooling scheme, this paper focuses on simulating mist film cooling under typical gas turbine operating conditions of high temperature and pressure. The mainstream flow is at 15 atm with a temperature of 1561K. Both 2-D and 3-D cases are considered with different hole geometries on a flat surface, including a 2-D slot, a simple round hole, a compound-angle hole, and fan-shaped holes. The results show that 10%-20% mist (based on the coolant mass flow rate) achieves 5%-10% cooling enhancement and provides an additional 30-68K adiabatic wall temperature reduction. Uniform droplets of 5 to 20 μm are used. The droplet trajectories indicate the droplets tend to move away from the wall, which results in a lower cooling enhancement than under low pressure and temperature conditions. The commercial software Fluent (v. 6.2.16) is adopted in this study, and the standard k-ε model with enhanced wall treatment is adopted as the turbulence model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of Mist Film Cooling on Rotating Gas Turbine Blades

Film cooling technique has been successfully applied to gas turbine blades to prevent it from the hot flue gas. However, a continuous demand of increasing the turbine inlet temperature to raise the efficiency of the turbine requires continuous improvement in film cooling effectiveness. The concept of injecting mist (tiny water droplets) into the cooling fluid has been proven under laboratory co...

متن کامل

Two-phase Flow Simulation of Mist Film Cooling with Different Wall Heating Conditions

Effective cooling of gas turbine combustor liners, combustor transition pieces, turbine vanes (nozzles) and blades (buckets) is a critical task to protect these components from the flue gas at extremely high temperature. Air film cooling has been successfully used to cool these hot sections for the last half century. However, the net benefits from the traditional methods seem to be marginally i...

متن کامل

Computational Analysis of Surface Curvature Effect on Mist Film Cooling Performance

Air film cooling has been widely employed to cool gas turbine hot components such as combustor liners, combustor transition pieces, turbine vanes and blades. Enhancing air film cooling by injecting mist with tiny water droplets with diameters of 5-10μm has been studied in the past on flat surfaces. This paper focuses on computationally investigating the curvature effect on mist/air film cooling...

متن کامل

CFD Model Validation and Prediction of Mist/Steam Cooling in a 180-Degree Bend Tubes

To achieve higher efficiency target of the advanced turbine systems, the closed-loop steam cooling scheme is employed to cool the airfoil. It is proven from the experimental results at laboratory working conditions that injecting mist into steam can significantly augment the heat transfer in the turbine blades with several fundamental studies. The mist cooling technique has to be tested at gas ...

متن کامل

An Investigation of Applicability of Transporting Water Mist for Cooling Turbine Vanes

This paper presents a numerical study to investigate the feasibility of transporting mist through the internal cooling channel in high-pressure turbine vanes for film cooling over the vane's surface. The idea of using mist film cooling to enhance conventional air cooling has been proven to be a feasible technique in the laboratory conditions and by computational simulations. However, there is a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006